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Alkynes were oxidized efficiently using the catalytic amount of PdCl2 and CuCl2 in PEG-400 in the pres-
ence of water, providing excellent yields of the corresponding 1,2-diketones. A variety of alkynes were
well-suited substrates for the oxidation under the described conditions. Further, the optimized condi-
tions were successfully utilized for the one-pot synthesis of 2,3-disubstituted quinoxaline derivatives.
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Poly (ethylene glycol) (PEG) has been emerging as a promising
green solvent and receiving more attention for both combinatorial
as well as for heterogeneous catalysts.1 The viscosity of PEG at
ambient and higher temperatures gives them significant advantage
to use for all general operations. PEG offers advantages such as un-
ique solubility properties, low vapor pressure, ready availability,
and low cost, which renders it a good solvent for various organic
transformations, such as coupling,2 oxidation,3 addition,4 reduction
reactions.5 We have also successfully demonstrated the use of PEG
as a reusable solvent for asymmetric dihydroxylation,6a Pd(OAc)2-
catalyzed Heck reaction,6b DABCO-catalyzed Baylis–Hillman reac-
tion,6c Pd/CaCO3-catalyzed partial reduction of alkynes to cis-ole-
fins,6d

L-proline-catalyzed asymmetric Aldol reactions,6e one-pot
conversion of amines to homologated esters.6f Further applications
of PEG in organic transformations are still welcome.

Oxidation of substituted internal alkynes is one of the most use-
ful methods among the reported methods for the synthesis of 1,2-
diketones. The known oxidation methods include the use of
KMnO4,7 transition metal catalysts,8 DMSO,9 Wacker-type oxida-
tion using molecular oxygen,10 oxone in trifluoroacetic acid,11 or
acid-promoted reactions.12 However, most of these oxidation reac-
tions suffer from a variety of disadvantages such as the use of toxic
or expensive reagents, higher temperatures, or cryogenic reaction
conditions. In continuation of our interest on the development of
PEG-mediated reactions, we now report a mild oxidizing catalytic
ll rights reserved.
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reagent system, PdCl2/CuCl2 in PEG/H2O (8:2), for the oxidation
of alkynes to 1,2-diketones as a recyclable system (Scheme 1).

Our studies started with the reaction of diphenylacetylene (1a)
with catalytic amount (5 mol %) of PdCl2/CuCl2 in polyethylene gly-
col in the presence of water (8:2), which provided the correspond-
ing ketone 2a in 80% yield (Table 1, entry 1). The reaction
proceeded at room temperature in 10 h for completion. We then
explored the generality of the reaction by varying the substituent
on the acetylene and the results are summarized in Table 1. All
the substrates studied, diaryl acetylenes (1b–g), have been oxi-
dized to the corresponding 1,2-diketones in good yields (Table 1,
entries 2–7). Moreover, the reactions also proceeded with aryl al-
kyl acetylenes 1h and 1i (Table 1, entries 8 and 9), though slightly
lower yields were obtained.13

The recycling performance of the present reagent system,
PdCl2/CuCl2 in PEG, was investigated in the oxidation of 4-(phen-
ylethynyl)benzonitrile (1c). The data presented in Table 2 show
that the described reagent system could be recycled and reused
five times without the loss of reactivity. Further, the reusability
of the recycled reagent system was also tested for the different
substrates. As the first experiment, the oxidation of 1e gave dike-
tone 2e in 78% yield. The recycled reagent system from this reac-
PEG/H2O (8:2), rt,
8 - 14h O

%78-36aryl,lykal=R

Scheme 1. Oxidation of alkynes to 1,2-diketones.
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Table 3
Recyclability for different substrates

Alkyne Yielda (%)

1st Run 1e 78
2nd Run 1g 80

a Isolated yield after column chromatography.

Table 1
Oxidation of alkyne with PdCl2/CuCl2 in PEG/H2Oa
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a Reaction conditions: Internal alkyne (1 mmol), PdCl2 (5 mol %), CuCl2 (5 mol %), PEG/H2O (8:2), rt.
b Products were characterized by 1H, 13C NMR, and mass spectroscopy.
c Isolated yields.

Table 2
Recyclability for same substrate

Alkyne Yielda (%)

1st 2nd 3rd 4th 5th

1c 87 87 80 80 75

a Isolated yield after column chromatography.
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tion was used for the oxidation of 1g, which also furnished the
corresponding diketone 2g in 80% yield and no contaminants
were observed (Table 3).

The obtained products in the above-described transformation,
1,2-diketones, are the useful compounds for the preparation of
quinoxaline derivatives,14 by reacting with 1,2-diaminobenzene.
By taking this advantage, further, we have explored the one-pot
synthesis of quinoxaline derivatives under the described condi-
tions (Scheme 2).15

Accordingly, the oxidation of 1b was carried out using 5 mol %
of PdCl2/CuCl2 in PEG/H2O (8:2) followed by the addition of 1,2-
diaminobenzene. Interestingly, the expected quinoxaline 3a was
obtained in 80% yield at room temperature (Table 4, entry 1). To
prove the generality of the reagent system for this one-pot trans-
formation, a few more substrates 1c, 1e, and 1g were studied



Table 4
One-pot synthesis of quinoxaline derivatives

S.No Alkyne Time (h) Quinoxalinea Yieldb (%)

1 lb 16 N

N

OH
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N
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N

OMe

3d 78

a Products were characterized by 1H, 13C NMR, and mass spectroscopy.
b Isolated yields.
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Scheme 2. Oxidation of alkynes to 1,2-diketones.
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and the results are summarized in Table 4. The reaction of alkynes
1c, 1e, and 1g under the present reaction conditions in the pres-
ence of 1,2-diaminobenzene provided the 2,3-disubstituted quin-
oxaline derivatives in good yields (Table 4, entries 2–4).

In summary, an efficient recyclable catalytic system for the oxi-
dation of internal alkynes to 1,2-diketones has been demonstrated.
5 mol % of PdCl2/CuCl2 in PEG/H2O was used for the described
transformation, and the recyclability has also been proved. Further,
the efficiency of this reagent system in one-pot synthesis of 2,3-
disubstituted quinoxaline derivatives was successfully explored.
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